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Abstract

In the visual question answering (VQA) task, many success-
ful works focus on building end-to-end predictive models,
but the interpretability of the reasoning process is ignored,
which is however very important for evaluating the trustwor-
thiness of the model. The recent MAC-network (Hudson and
Manning 2018) achieves state-of-the-art results on the VQA
task which demonstrates the effectiveness of differentiable
reasoning models. However, for MAC, interpreting the rea-
soning process by visualizing the attention map often fails to
clearly show the logic of multi-step reasoning. In this paper,
we propose SMAC (Symbolic MAC) to improve the inter-
pretability in the following points. (1) Intent classification is
introduced to make the question understanding explainable.
(2) We propose the Translate Unit (TU) to translate the rea-
soning process into the formalized query language for inter-
preting, as well as providing explicit guidance on the reason-
ing cell in the training phase. We further enlarge the feature
space to leverage more information by incorporating the im-
age pixel features and the object-specific features simultane-
ously, which follows the multi-view learning framework. Ex-
periments demonstrate that SMAC is able to achieve compet-
itive performance on a large-scale and realistic GQA (Hudson
and Manning 2019) benchmark and show well interpretabil-
ity evidence with symbolic intermediate outcomes.

Introduction
Many interesting tasks emerged during the development of
machine learning and deep learning where the data source
can be different, for example, image and text have been used
in tasks like Visual Question Answering (VQA) (Antol et
al. 2015). In VQA task, given a question and an image, the
model has to understand the question and find the answer
from the image. There can be many applications of VQA
such as medical diagnostic (Lau et al. 2018) and text-to-
image information retrieval (Xie, Shen, and Zhu 2016).

More formally, we can define VQA as a parameterized
function A = f(Q, I; θ) which can be fitted by the neu-
ral network, where Q represents for question, I is the im-
age and A is the answer. There are typically three stages
in the VQA task. 1). Question understanding, which aims
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to extract semantic features from the question including the
intention and related entities (Young et al. 2018). 2). Im-
age understanding, which focuses on detecting the objects
in the image and producing the representation of them. The
extracted features can be considered as a knowledge base.
3). Reasoning, where text features and image features are
fused and applied by a reasoning function (e.g. a classifier)
to produce the answer.

Attention mechanism (Bahdanau, Cho, and Bengio 2015)
has proved its efficiency in retrieving information from con-
tinuous feature space in both Computer Vision (CV) and
Natural Language Processing (NLP), which successfully be-
comes a commonly used method to modelling the fusion and
reasoning. Works like (Hudson and Manning 2019) and (Lu
et al. 2018) apply attention to map the question into the fea-
ture space of images and filter out required representation of
specific objects. However, one-step reasoning only allows
the question to attend the image once which sometimes fails
to handle complex logic in the question, for example, Is the
fence which is to the right of the animal orange or gray?,
which requires the model to correctly find the mentioned
object (fence) and identifies its color. Therefore, multi-step
reasoning architecture is designed in MAC network (Hudson
and Manning 2018) where the recurrent cell keeps reading
information from the image and writing into the memory
embedding in fixed reasoning steps P , which achieves state-
of-the-art results on CLEVR (Johnson et al. 2017) dataset.

In recent years, explainable AI (Samek, Wiegand, and
Müller 2017) becomes an active topic which mainly inves-
tigates methods of improving the interpretability of deep
learning models. Interpretability can be considered as an
important feature for applications of AI such as medical or
self-driving. Although attention models provide us a chance
to explain the behavior of the model by visualizing the at-
tention maps, it is still difficult to explicitly describe the
decision making process because most attention maps only
model the correlations but not causality, which is particu-
larly important in a reasoning task like VQA. For MAC-
network, it successfully models the multi-step reasoning in
an end-to-end manner but is still not able to clearly explain
how the model reasons in each step, which motivates us
to further improve the interpretability of MAC and propose
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Figure 1: MAC network proposed in (Hudson and Manning
2018)

Symbolic MAC (SMAC).
In this paper, we propose SMAC to improve the inter-

pretability of MAC by enabling the model produce interme-
diate outcomes including the predicted intent of the question
and the query language statements generated from reasoning
process, which can be considered as bring the techniques of
symbolic AI back to NN model for interpretation. The con-
tribution of our work can be summarized as follows:

• We propose SMAC to improve the interpretability of
MAC by introducing intent classification to make prob-
lem understanding explainable and the Translate Unit to
generate query language statements during reasoning.

• The experimental results performed on GQA benchmark
validate that SMAC can reasoning logically in real world
VQA tasks, as well as preserving the predictive perfor-
mance.

Related Work
In this section, we introduce the main components of MAC
especially pointing out the parts that we aim to improve.

Memory, Attention, and Composition (MAC)
Compositional VQA tasks like recognizing attributes of ob-
jects, reasoning logical relations, counting and comparisons
(Hudson and Manning 2018) require the model to be capa-
ble of executing a multi-step reasoning to capture the logi-
cal operations of the question. MAC is deliberately designed
for solving such problems depending on its recurrent Mem-
ory, Attention and Composition cell which is similar to
the Neural Turing Machine (Graves, Wayne, and Danihelka
2014). The MAC cell is composed of three units, the Con-
trol Unit, the Read Unit and the Write Unit, as shown in
Figure 1. Besides the MAC cell, the input unit and output
unit are employed for encoding the input data (question and
image) and making predictions on the answer, respectively.

The Input & Output Unit Before reasoning, the ques-
tion and the image must be encoded to acquire the dis-
tributed representation. For the question, MAC uses a biL-
STM to produce q = [

−→
h ,
←−
h ], q ∈ R2d representing

the concatenation of the last hidden states in both direc-
tions and the contextual word embedding denoted as cw =
[cw1, ...cwS ], cw ∈ RS×d. For P reasoning step i =
1, ..., P , a linear transformation is applied to q and acquires
the position-awared qi ∈ R2d. For the image G, it can be
encoded by a pre-trained model such as ResNet101 (He et
al. 2016) for extracting pure pixel features or faster R-CNN
(Ren et al. 2015) for object based features, represented as
I ∈ RK×d where K equals H ×W or the number of de-
tected objects. The encoded question and image are passed
into the reasoning function to produce a memory embed-
ding, denoted as m = f(Q,G). Finally, the memory m is
decoded by the output unit combined with q, resulting in
â = OU(m, q), â ∈ R|A| where A is the vocabulary of the
answer.

The Control Unit (CU) The control unit can be denoted
as a function ci = CU(ci−1, qi, cw), ci ∈ Rd which gen-
erates a control signal conditioned on the previous con-
trol signal, the question representation and the contextual
word embedding. More specifically, the previous control
signal ci−1 and position-awared question representation qi
will combine and attend the context cw with a concatena-
tion attention (Luong, Pham, and Manning 2015), which
extracts information from the context cw, represented as
ci = AttnCU([qi, ci−1], cw).

The Read Unit (RU) The read unit retrieves informa-
tion from the image guided by the control signal ci and
the previous memory mi−1 ∈ R, which can be defined
as ri = RU(ci,mi−1, I), ri ∈ Rd. Same as the control
unit, the attention model is applied on the image I with a
fused query signal rvi produced by ci and mi−1, resulting
in ri = AttnRU(rvi, I).

The Write Unit (WU) The write unit takes the previ-
ous memory mi−1, the control signal ci and retrieved in-
formation ri as input, manipulates the previous memory
with them and outputs the new memory, denoted as mi =
WU(mi−1, ci, ri). In addition, for further improving the rea-
soning performance, self-attention and memory-gate are ap-
plied in the write unit to handle long range reasoning, and
can be re-written as mi = WU(ci, ri,m) where m =
[m1, ...,mi−1]. At the last step of reasoning, the memory
mP is passed into the output unit to predict the answer.

Although MAC is particularly appropriate for multi-step
reasoning, it suffers from the problem that the reasoning
process cannot be clearly interpreted. In the original work,
highlighting the region of the image based on the attention
map could indeed prove that the model is able to observe
the correct object with respect to the entity mentioned in the
question. But it fails to demonstrate that the observation is
related to a specific logical operation such querying, verify-
ing, counting or comparing. Therefore, we propose SMAC
to solve this problem in a simple but effective way.
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Figure 2: The SMAC proposed in our work. The main differ-
ence between our work and MAC is: 1) We introduce the pre
and post intent classification represented as u and v. 2) The
Translate Unit is proposed to decode the reasoning process.
3) Multi-view learning with the Dual Read Unit is adopted.

Symbolic MAC

In this section, we introduce our proposed Symbolic MAC
as shown in Figure 2, starting from the dual read unit to the
intent classification and the Translate Unit.

The Dual Read Unit

For real world VQA tasks, the input image is often noisy and
full of semantic relations between objects, which requires
multi-view features extracted from different levels and per-
spectives (Sun et al. 2019). Therefore, we consider using
the multi-view learning to enlarge the feature space by fus-
ing the object-level and spatial-level feature extracted with
Faster-RCNN (Ren et al. 2015) and ResNet101 (He et al.
2016), respectively, to provide the model with a better sight.
More specifically, we duplicate the original read unit with-
out changing the internal structure, and retrieve information
from both spatial feature fs ∈ RKs×ds and object feature
fo ∈ RKo×do guided bym and c, resulting in ri,s ∈ Rds and
ri,o ∈ Rdo . Then, we fuse two features by simply concate-
nating them and performing a ELU (Clevert, Unterthiner,
and Hochreiter 2016) non-linear transformation. Not that the
fusion is performed twice with different parameter sets, aim-
ing to provide different representations for the Write Unit
and the Translate Unit (introduced subsequently), respec-

tively:

rWU
i = ELU(W

(ds+do)×d
WU [ri,s; ri,o] + bdWU) (1)

rTU
i = ELU(W

(ds+do)×d
TU [ri,s; ri,o] + bdTU). (2)

The Dual Read Unit mainly solves the problem that orig-
inal MAC in (Hudson and Manning 2019) only uses object-
based features or spatial feature which lacks the informa-
tion of the semantic relations among objects. Fused features
could provide a more comprehensive understanding of the
image.

Intent Classification
Intent classification and slot filling are critical techniques
for Natural Language Understanding (NLU) (E et al. 2019)
especially in task-oriented dialogue systems (Chen et al.
2017). Intent classification is often treated as a sentence
classification task where predicted intentions can be used
to invoke specific task operators. For an end-to-end gen-
erative dialogue system, intent classification is not directly
used for the answer generation (Chen et al. 2017) but can
be used as an auxiliary task under the multi-task learning
framework, which could improve the quality of the ques-
tion representation. More importantly, the predicted intent
is an interface for explaining the language understanding.
Therefore, we adapt the concept into the MAC and propose
a pre-intent classifier P (u|q; θpre) and post-intent classifier
P (v|m, q, u; θpost) denoted as follows:

û = W d×|U|
u φu(q) + b|U|u (3)

v̂ = W d×|V|
v φv([m; q; û]) + b|V|v . (4)

The pre-intent classifier is applied after the question en-
coder, where q is the question representation, performed
with a non-linear transformation through φ, and U is the pre-
defined pre-intent set. However, while encoding the ques-
tion, the model has not “seen” the image yet, which means
the predicted intent can only be high-level context-free in-
tentions such as “VERIFYING”, “COMPARING”. Therefore
we name it as pre-intent classification.

After the reasoning process, the memory m takes the in-
formation about the answer as well as the extracted seman-
tic of the question. As mentioned in (Hudson and Man-
ning 2019), the validity and plausibility measure whether
the answer is reasonable according to the question (e.g. ask-
ing about the color but not answering about size), which is
tightly correlated with the understanding of the intention.
Therefore, we further add a post-intent classifier after the
reasoning cell, making a fine-grained intent classification
based on the memory, the predicted pre-intent as well as the
question, denoted in Eq (4), where V is the post-intent set.
û and v̂ are logits outputs from two classifiers, which can

be used for computing the loss with the cross-entropy, re-
sulting in L(θpre) and L(θpost). We deliberately use simple
classifier (i.e. two-layered NN) rather than deep architec-
tures, aiming to preserve the feature extracting task in the
backbone but not parameters of intent classifiers. In addi-
tion, we further exploit û and v̂ in the prediction of the an-
swer, denoted as:



â = W d×|A|
a φa([m; q; û; v̂]) + b|A|a . (5)

By adding the intent classification module, the language
understanding becomes transparent and interpretable.

The Translate Unit
A reasoning process can be expressed as a logical expres-
sion, which can be set operations like ∨,∧ and ¬, or high-
level functional programs. In MAC, the reasoning process
works internally and can only be interpreted by visualiz-
ing the attention map, which is not clear enough, especially
for complex logic. Therefore, we propose the Translate
Unit (TU) to translate the reasoning process into a formal-
ized query language (functional programming statements)
defined by the GQA dataset (Hudson and Manning 2019).
In the dataset, each question is associated with a query lan-
guage (QL) statement, for example, the question “What is
on the white wall?” has the QL “select: wall→ filter color:
white→ relate: ,on,s→ query: name”, which defines a se-
ries of operations and arguments. Therefore, we can use such
QL statements to supervise the reasoning process, and trans-
late it back to QL in the inference phase for interpretation.
However, simply applying the sequence-to-sequence frame-
work to decode the control flow into original QL makes it
difficult for the model to learn and also extremely increases
the reasoning length. To solve such problem, we use an alter-
native form of the QL provided by the dataset, which splits
the statement into list of operation and argument pairs such
as “[(select, wall), (filter color, white),...]”. We further split
binary operations like choosing attributes,“(choose, red ‖
green)”, or operations with more arguments like verifying
relations of two objects, “(verify relation, (ball,on,table))”
into unary operations: “[(choose, red), (choose, green)]”
and “[(verify relation s, ball), (verify relation p, on), (ver-
ify relation o, table)]”. In this way, all operations are unary,
which simplifies the decoding process.

To use the operation sequence, we propose the translate
unit (TU) to decode the reasoning process from control sig-
nal c and retrieved information r. More formally, we define
P (oi|ci; θo) and P (πi|ci, ri, oi; θπ) as the probability distri-
bution of the operation and argument, respectively. For rea-
soning step i, the distribution can be learned via a neural
network:

ôi = W d×|O|
o ci + b|O|o (6)

π̂i = W (2d+|O|)×|Π|
π [ci; ri; ôi] + b|Π|π , (7)

whereO and Π are pre-defined operation and argument sets.
We can consider such two functions as a sequence generator
which can be trained via teacher forcing, and the loss func-
tion can be formulated as:

L(θo) = − 1

P

P∑
i

|O|∑
j

oi,j logP (oi,j) (8)

L(θπ) = − 1

P

P∑
i

|Π|∑
k

πi,j logP (πi,k). (9)

In the setting of MAC, the max reasoning step P is fixed,
and the model only uses the last step memory mP to pro-
duce the answer, which cannot be compatible with both easy
and difficult questions requiring variable reasoning lengths.
Therefore, we propose a method to dynamically control the
reasoning length. More specifically, we add a “< EOR >”
tag at the end of the operation sequence. Then, when the
model generates a “< EOR >” in step i, we stop the rea-
soning and use the i-th memory mi to produce the answer.
This approach prevents from introducing potential noise in
remaining steps and reduces the risk of gradient explosion
occurred in the recurrent structure.

Training
To train the model, we merge losses of auxiliary tasks with
the loss of the main task (i.e. the answer loss) together. This
results in L(θ):

L(θ) =

T∑
t

λtL(θt), (10)

where t ∈ {u, v, o, π, a}, and hyper-parameter λt is the
weight of specific loss. All parameters can be learned jointly
via maximum likelihood estimation (MLE) under the multi-
task learning framework (Ruder 2017).

Experiment
In this section, we introduce the experimental setup in-
cluding the dataset, the implementation details, the hyper-
parameters of the model as well as the evaluation metrics.
We compare our model with the state-of-the-art works based
on the same dataset and evaluation metrics.

Dataset
We use the recently introduced GQA (Hudson and Man-
ning 2019) dataset to train and evaluate our model. The
dataset contains 113K images and 22M questions. More de-
tailed statistics can be found in Table 1. The questions of the
dataset are provided in two groups (i.e. all and balanced).
The “balanced” group is a small subset of the “all” group,
which are sampled according to the distribution of the an-
swer, resulting in a more uniformed distribution. However,
the size of the “balanced” set is too small (943,000) where
each image is associated with only 13 questions, which is
not enough for training comparing with the “all” set (Q:I =
193:1), and therefore, we train our model with the “all” set.
In addition, the dataset has been split into train, validation
and test-dev set with the proportion of 87:12:1. There is also
a submission set which is used for evaluating the model on
the official GQA website 1, and the experimental result re-
ported in this paper is evaluated on this set.

For the image data, the dataset has already provided the
extracted spatial and object features with ResNet101 and
faster R-CNN, respectively, which can be directly used.
Each image has the spatial features with the shape of [7 × 7
× 2048], and object features with the shape of [100× 2048]
representing the padded object feature map.

1https://cs.stanford.edu/people/dorarad/gqa/challenge.html



# Train question 14,305,356
# Val question 2,011,853

# TestDev question 172,174
# Test question (Submission) 4,237,524

# Question word 3,097
# Answer word 1,878

# Pre-intents 5
# Post-intents 106
# Operations 98
# Arguments 2,729

Table 1: The detail of the dataset (# is abbr. of number)
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Figure 3: The length of operation sequence, which indicates
that most questions requires less than 8 operations

Model Configurations
Comparing with the original MAC mentioned in (Hudson
and Manning 2019) which sets the max reasoning step P =
4, we extend the reasoning length to 8 due to the statistical
results shown in Figure 3 which indicates that most ques-
tions need about less than 8 steps of reasoning. Questions
with more than 8 steps are trimmed in our experiment.

The dimensionality d of the model is set to 1024 for com-
putational efficiency. Dropout with masking probability of
0.15 is used to prevent overfitting. We use Adam (Kingma
and Ba 2015) with initial learning rate of 1e-4 for optimiza-
tion. The model is trained on a Tesla V100 GPU with the
batch size of 512 for 5 epochs, where each epoch requires
about 5 hours. Our model is implemented with PyTorch.

Evaluation Metrics
We mainly use the overall accuracy as well as customized
metrics proposed in the GQA dataset (Hudson and Manning
2019) which are introduced as follows:

• Binary: The accuracy of questions associated with an-
swers like yes/no or choosing from two candidates.

• Open: The accuracy of open domain questions like query-
ing attributes or relations about objects.

• Validity: Measures whether a given answer is in the ques-
tion scope (e.g. responding some color to a color ques-
tion).

• Plausibility: Whether the answer is reasonable or corre-
sponding to common sense.

• Consistency: Whether there are conflicts for answers as-
sociated with similar topics or questions (e.g. responding
green about an apple that has been identified as red in
other answers).

• Distribution: Measures if the model only predicts high
frequency answers (e.g. yes/no) but not less frequent ones.

The model is compared with MAC, Bottom-up (Anderson et
al. 2018) (the winner of 2017 VQA challenge) and several
baseline methods including CNN and LSTM, which have
been mentioned in (Hudson and Manning 2019). The de-
tailed evaluation results are shown in Table 2. We find that
the performance of SMAC is competitive.

Explainablity and Performance Analysis
In this section, we provide examples to show the evidence
that we can use translated QL to express the reasoning pro-
cess. Figure 4 shows an example where the model gener-
ates the operation and argument relating to the attention map
highlighted on the original image for each step. Step 1 to 4
correspond to operations of attending specific objects in the
image which can be easily explained with attention maps.
From step 5 and 6 we can see that the judgement of col-
ors cannot be clearly shown via attention maps but can be
expressed through symbols, which demonstrates that com-
plicated logic can be well interpreted by SMAC.

From the results in Table 2, SMAC achieves top 2 perfor-
mance in 4 out of 7 metrics. For overall accuracy, SMAC
is inferior to MAC but is competitive with Bottom-Up (the
winner of 2017 VQA challenge).

To further improve the accuracy of our model, we can
consider adapting some techniques and tricks from MAC.
For example, we can use the self-attention and memory gate
proposed in MAC to perform hierarchical mapping between
previous reasoning steps. However, this approach will sig-
nificantly increase the computational cost. In addition, the
fusion of the object-spatial features in current SMAC are rel-
atively naive, which often cannot provide high-quality rep-
resentations of the image, especially when the number of
detected objects is large.

Conclusion
In this paper, we propose SMAC based on MAC, which
mainly investigates the method of improving the inter-
pretability of reasoning in the VQA task. We conduct experi-
ment on the GQA dataset and show the evidence that the rea-
soning process can be clearly explained via query language.
At the same time, we achieve competitive results in parts
of evaluation metrics. In our future work, more techniques
and tricks will be incorporated to further improve the accu-
racy, while preserving the well interpretability in the current
work.
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