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Figure 1: Command for a self driving car from the Talk2Car
dataset: “You can park up ahead behind the silver car, next
to that lamp post with the orange sign on it”.

Abstract

In this paper, we propose a new spatial memory cell and a
spatial reasoner for the Visual Grounding task. The goal of
this task is to find a certain object in an image based on a
given textual query. Our work focuses on integrating the re-
gions of a Region Proposal Network (RPN) into a new mul-
tistep reasoning model which we call a Multimodal Spatial
Region Reasoner (MSRR). The introduced model uses the
object regions from an RPN as initialization of a 2D spatial
memory and then implements a multistep reasoning process
scoring each region according to the selected words of the
query, hence why we call it a multimodal reasoner. We evalu-
ate this new model on the recently proposed Talk2Car dataset,
which is a real-world referring expression dataset containing
commands for a self-driving car. The experiments show that
our model, which reasons jointly over the object regions of
the image and words of the query, largely improves the de-
tection accuracy of the referred object compared to current
state-of-the-art models.

Introduction
Visual Grounding (VG) is a task relevant to many real-world
scenarios and is defined as follows: Given a natural language
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expression, localize an image region based on this expres-
sion (Yu et al. 2018; Mao et al. 2016). VG is useful for a
variety of reasons. For instance, when taking a ride in a self-
driving car, the passenger might want to instruct the car by
saying, e.g.,“stop next to my friend with his red shirt next to
the tree” (Figure 1). Another useful application of this task
is service robots for the elderly. A person of age could say
to a robot “get me that can of coke next to the fridge” upon
which the robot has to first locate the object and then execute
the command.

The approaches for VG and to the related Visual Question
Answering (VQA) task, where a model has to give a textual
answer about a question for a certain image, can be divided
into two different paradigms. The first paradigm, which is
common in VG, is a two-staged method. First, a Region Pro-
posal Network (RPN) predicts regions for objects in the im-
age that function as candidate regions for the sought object.
Secondly, a model tries to rank these regions according to
the query and the highest scoring region is selected as the
answer (Hu et al. 2016; Nagaraja, Morariu, and Davis 2016;
Deng et al. 2018). The second paradigm, which is also used
in VQA, uses a (multistep) reasoning system that consists
of multiple modules, also called cells. One of these cells is
used to decompose the query and guides the search over the
image in order to extract information from it. Finally, an an-
swer is generated based on this process.

In this paper, we propose a novel method for the VG task
that incorporates both the region ranking paradigm and the
multistep reasoning paradigm.

To this end, we have created a new type of cell, called
the Spatial cell, that incorporates 2D spatial information
from extracted regions in a spatial data structure which we
call the SpatialMap. This cell is integrated into a new
Multimodal Spatial Region Reasoner model (MSRR) which
jointly reasons over the words of the query and object re-
gions in the image. We evaluate this model on the Talk2Car
dataset (Deruyttere et al. 2019) which is a referential ex-
pression dataset that contains referential commands given
to self-driving cars. This dataset consists of multiple modal-
ities (LIDAR, RADAR, Video, ...) but in this paper we only
focus on the images and the referential expressions.

The main contributions of this paper are as follows:
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Figure 2: How the MSRRmodel works. In step (a) an image is given together with a command and R (in this case R = 3) bound-
ing boxes. In step (b), each of these bounding boxes receives an entry in the spatial data structure called the SpatialMap.
Step (c) represents the reasoning process of our model. At the start (t = 0), each region has a score of 1. While the reasoning
process progresses, regions will receive new scores based how well they align with the words that are focused in that reasoning
step. These focused words are indicated in red in each step. At the end of the reasoning (t = T ), the region with the highest
score is returned as the answer of the model in step (d).

1. We propose a novel integration method of decomposing a
query in a multistep reasoning process while continuously
ranking regions during each step leading to low scoring
regions to be ignored during the reasoning process. This
process leads to better coupling region proposals with de-
composed queries.

2. We propose a new multimodal model called MSRR based
on this integration.

3. The MSRR uses a new Spatial cell which stores
2D spatial information in a data structure called a
SpatialMap.

4. We evaluate our model on the Talk2car (Deruyttere et al.
2019) dataset and show that our results improve the best
state-of-the-art model by almost 9% in terms of IoU of the
found referred object.

MSRR
For the VG task, when the MSRR is given an image with
a query and a set of extracted object regions for this im-
age, it should select the best region according to the query.
This selection is based on the final score of the region. To
assign a score to each region, the model performs a mul-
tistep reasoning process over the query, the image and the
regions. In each reasoning step, the model first focuses on
certain words of the query. Then, the model extracts infor-
mation in parallel for each region from the image based on
these words. Finally, according to how well the extracted
information of each region aligns with the focused words,
the model will assign scores in parallel to each of these re-
gions. A simplified version of this process is presented in
Figure 2. To execute this process, our model implements
different modules that interact with each other, which we
henceforth refer to as cells. The three different cells are as
follows: (i) a TxtReader, based on (Deng et al. 2018;
Hudson and Manning 2018; Yu et al. 2018; Hu et al. 2018),
that controls the decomposition of the query text and thus
dictates how the reasoning process will unfold, (ii) a novel
Spatial cell that functions as the 2D spatial memory of

the model by using a SpatialMap, (iii) an ImgReader,
based on (Deng et al. 2018; Hudson and Manning 2018), that
extracts information from a given image based on the con-
trol of (i) and the spatial memory from (ii). In our model,
the alignment between words in the query and objects in
the image remains transparent in the reasoning steps, and
the model also emphasizes the joint reasoning with the two
modalities. A full detailed implementation of our model will
be published at a later date.

SpatialMap

Figure 3: Example of spatial maps in the SpatialMap for
3 regions (green bounding boxes). First, the image is divided
into grid cells, then for each found object a separate spatial
map is created where the cells belonging to the region are
given a score of 1. The other cells receive a lower weight.

An important part of the MSRR, used in the Spatial



cell, is the SpatialMap which is a spatial data structure
that is calculated a-priori and which stores the location of R
found object regions from a RPN. This spatial data structure
is of shape [R × Hf × Wf ] with Hf and Wf respectively
the height and width of the extracted image features. To cre-
ate the data structure, every bounding box r is mapped on a
2D spatial map of shape [Hf × Wf ]. The mapping assigns
a weight of 1 to every cell of this 2D map that falls inside
the bounding box r, and a lower weight elsewhere (in our
case 0.5). This map also stores the score of each bounding
box during the reasoning process. This process can be seen
in Figure 3. The reasoning behind the spatial map is that it
is used in the ImgReader to (a) indicate the location of
the found object of bounding box r – this will also indicate
where the reasoning process should take place – by giving
those cells a weight of 1, and (b) the model should also be
able to see objects that are located elsewhere in the picture,
hence why we give the other cells a non-zero weight. An ex-
ample of this is if we are looking for “the man next to the
tree” and an entry in the SpatialMap indicates the loca-
tion of a man, then the ImgReader cell should look around
this region for the tree. The model is thus checking which re-
gions correspond the most with the given expression which
can be seen as a bottom-up reasoning process. A top-down
reasoning process would be to only take the image and rea-
son over the full image to find the looked after region.

Dataset
In the experiments below we train and test on the Talk2Car
dataset (Deruyttere et al. 2019), which contains images from
the nuScenes dataset (Caesar et al. 2019) that are annotated
with natural language commands, bounding boxes of scene
objects, and the bounding box of the object that is referred to
in a command. The Talk2Car dataset consists of commands
given to a self-driving car. In total it contains 11,959 com-
mands that belong to 9,217 images, which are either taken in
Singapore or Boston during different weather (sun or rain)
and time conditions (night or day). This dataset was selected
because of its complex natural language commands that con-
strain - through modifying language expressions - the ob-
ject to be found in the scene demanding reasoning over the
objects in the scene and words in the command. Note also
that in Singapore and Boston they drive on different sides
of the road. Train, validation and test sets contain respec-
tively 8,349 (69.8%), 1,163 (9.721%) and 2,447 (20.4%)
commands. On average a command and an image each con-
tain respectively around 11 words and 11 objects. Among
the words of the commands around 21% are nouns, 21%
verbs and around 6% are adjectives. In the ground truth an-
notations there are 23 different object categories (e.g., car,
truck, man, tree). On average an image contains more than
4 objects of the same category (e.g., cars). In addition, the
dataset consists of several test sets, each of which evaluate
specific challenging settings while the full test is used to as-
sess the overall performance of the model. A first sub-test
set assesses the ability of a model to recognise distant re-
ferred objects. The second and third sub-test sets evaluate
how well a model can cope with short and long commands
respectively. The final sub-test set assesses how the model

copes with ambiguity. In our case ambiguity refers to hav-
ing multiple objects of the referred class in the visual scene.

Experimental setup
We evaluate the proposed MSRR against 5 different strong
baselines on three different measures. Every model that uses
regions will use a CenterNet (Zhou, Wang, and Krähenbühl
2019) model to extract these regions. For these models we
will do tests with different amount of regions (top-k) based
on their confidence score.

Baselines
1. SCRC (Hu et al. 2016).

2. Transformed MAC (Hudson and Manning 2018) for VG.
Currently the state of the art on Talk2car.

3. STACK (Hu et al. 2018).

4. A-ATT (Deng et al. 2018).

5. SpatialPrior: The last model, called SpatialPrior, uses a
SpatialMap where only the object regions receive a
weight of 1. The cells that fall outside of a region receive
a 0 weight. This SpatialMap is then multiplied with
the extracted image features to limit the search space to
only these parts. These altered image features are passed
to MAC to reason with.

Measures
All the models are evaluated with three measures. The first
measure is the overall accuracy of the model. This is defined
as the percentage of predicted regions that have an Inter-
section over Union (IoU) or overlap, with the ground truth
regions of over 0.5. The second measure is inference speed
as the setting in the Talk2Car dataset is a time critical set-
ting. The final measure is the number of parameters of each
model.

Results
The results of the MSRR compared to the 4 baselines and the
state of the art (MAC) on the Talk2Car test set are shown
in Table 1. In this table we see the three different measures
mentioned before. From these results we see that the MSRR
clearly outperforms all the other models for any top-k con-
fident number of regions. Note that this top-k confidence
selection mechanism of bounding boxes is still very sim-
ple but it already gives a big improvement. The best MSRR
model further improves the state of the art baseline (MAC)
by 19.8% relatively in terms of IoU. In terms of number of
trainable parameters, our model is roughly on par with the
baselines, but is about five time slower than MAC at infer-
ence time. We argue that the difference in accuracy and in-
ference times comes from the fact that our model reasons
over all the regions integrated in the visual field while MAC
reasons solely over the image. The MSRR was also trained
with only ground truth bounding boxes to know the theoret-
ical limit of the model and achieved an IoU of 68%.



Method IoU0.50 (%) Inference Speed (ms) Params (M)
MAC (Hudson and Manning 2018) 50.51 51 41.59
STACK (Hu et al. 2018) 33.71 52 35.2
SCRC (Top-32) (Hu et al. 2016) 43.80 208 52.47
SpatialPrior (Top-32) 49.94 179 61.76
A-ATT (Top-16) (Deng et al. 2018) 45.12 180 160.31
MSRR (top-8) 56.85 224.7 62.25
MSRR (top-16) 60.29 270.5 62.25
MSRR (top-32) 58.93 359.7 62.39
MSRR (top-64) 51.74 576.2 62.39

Table 1: Performance (IoU0.50), inference speed (evaluated on a TITAN XP) and number of parameters of the different models.
All models that use object regions have been evaluated with the top-k (k = 8, 16, 32, 64) scoring regions. In the table we only
display the best k-value for SCRC, SpatialPrior and A-ATT for brevity.

Conclusion
In this paper we introduced a multimodal and multistep rea-
soning model, called MSRR, for VG tasks. The model does
not only decompose the query in multiple reasoning steps,
but it also decomposes the reasoning process over the ex-
tracted regions by using a SpatialMap which allows the
reasoning process over the regions to happen in an indepen-
dent and parallel manner. The MSRR was evaluated on the
Talk2Car dataset which is composed of images of city en-
vironments taken from the viewpoint of a car accompanied
by commands that passengers give to the car. The proposed
model that jointly reasons over the words of the command
and the detected objects in the visual scene with a large mar-
gin outperforms state-of-the-art models in terms of the IoU
metric that compares the ground-truth referred object with
the object found. We argue that having a separate reason-
ing process for each region, thanks to the SpatialMap,
is certainly beneficial in environments like self-driving cars
as it allows the reasoning process to remain transparent but
also indicates when the model is hesitant in certain situa-
tions based on the scores of certain regions. In future work
the value of this spatial map will be further explored as assis-
tance in the navigation process of the car when executing the
command. Also the multimodal multistep reasoning model
gives many possibilities for future improvements which we
did not yet explore in this paper. Some of these improve-
ments are, for instance, taking into account object names
recognised in the image and their probability distributions
(cf. as done in linking text entities with knowledge base enti-
ties in (Le and Titov 2019)), integrating intelligent selection
mechanisms that give priority to the processing of certain
words or object regions based on prior knowledge, or dy-
namically improving the region proposals.
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points. arXiv preprint arXiv:1904.07850.


