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ConceptNet in Context



• Open Mind Common Sense

• Created by Catherine Havasi, Push Singh, Thomas Lin, others, in 
1999

• Motivating example: making search more natural
•  “my cat is sick” -> “veterinarian cambridge ma”

• Goal: teach computers the basic things that people know

• Represent this knowledge in natural language, so non-experts 
can contribute it and interact with it

• Hugo Liu first transformed Open Mind into a knowledge graph, 
ConceptNet

Origins



Collecting knowledge with crowdsourcing
Open Mind Common Sense,
around 2006



An international, multilingual project
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A small fragment of ConceptNet 5



ConceptNet’s data sources

• Crowdsourced knowledge
– Open Mind Common Sense, Wiktionary, DBPedia, Yahoo Japan / Kyoto 

University project
• Games with a purpose

– Verbosity, nadya.jp
• Expert resources

– Open Multilingual WordNet, JMDict, CEDict, OpenCyc, CLDR emoji 
definitions



How do we represent this in 
machine learning?



Knowledge graphs as word embeddings

• We started representing ConceptNet as embeddings in 2007
• Enabled new capabilities that were difficult to evaluate

• When word embeddings became popular, they were instead 
based on distributional semantics (CBOW, skipgrams, etc.)

• Retrofitting (Manaal Faruqui, 2015) revealed the power of 
distributional semantics plus a knowledge graph
• Apply knowledge-based constraints after training

• For some reason this works better than during training



Retrofitting with a knowledge graph

• Terms that are connected in the knowledge graph should have 
vectors that are closer together

• Many extensions now:
• “Counter-fitting” moves antonyms farther apart (Mrkšić et al., 2016)
• “Morph-fitting” accounts for morphology (Vulić et al., 2017)
• Applied to the union of vocabularies instead of the intersection (our work)

oak

tree

furniture



• Word embeddings with common sense built in

• Hybrid of ConceptNet and distributional semantics, via our 
variant of retrofitting

• Multilingual by design

• Open source, open data



Building ConceptNet Numberbatch
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Benchmarks
Hey wow, this actually works



Intrinsic evaluation: Word relatedness 
(SemEval 2017)



Intrinsic evaluation: Distinguishing attributes 
(SemEval 2018)

• We got 74% accuracy (2nd place) by 
directly querying ConceptNet 
Numberbatch

• Additional features trained on the 
provided training data didn’t help on 
the test set

• All top systems used knowledge 
graphs



Extrinsic evaluation: Story understanding

• SemEval-2018 task: answer simple multiple-choice questions about a 
passage



Story understanding at SemEval-2018

• Winning system: TriAN (Three-way Attention and Relational 
Knowledge for Commonsense Machine Comprehension)
• Liang Wang et al., Yuanfudao Research

• Concatenated each input embedding with a relation embedding, trained 
to represent what ConceptNet relations exist between the word and 
the passage



Other benchmarks

• Story Cloze Test
• GPT-1 was a breakthrough, but Jiaao Chen et al. (2018) improved on it 

slightly with ConceptNet

• OpenBookQA
• ConceptNet didn’t help, but Ai2’s own science knowledge graph Aristo 

did (Todor Mihaylov et al., 2018)

• CommonsenseQA
• Generating synthetic training data using ConceptNet helps (Zhi-Xiu Ye 

et al., 2019)



Has the situation changed?

• Transformer models were big news in 2019

• Language models such as BERT, XLNet, and GPT-2 indicate 
some level of implicit common sense understanding



ReCoRD / COIN shared task (2019)

• Run by Simon Ostermann, Sheng Zhang, 
Michael Roth, and Peter Clark for EMNLP

• Answer questions based on news stories, 
some of which are intended to require 
common sense reasoning

• Winning system: XLNet plus rule-based 
answer verification (Xiepeng Li et al.)

• None of the top 3 systems used external 
knowledge



Why Do Masked Neural Language Models Still 
Need Common Sense Knowledge?
• Presumably you just saw this talk by Sunjae Kwon

• MNLMs seem to understand a lot but they still struggle with 
things that actually require common-sense

• So try augmenting your system with an attention model of 
edges in a knowledge graph



A simplistic answer to why we need knowledge

• Language models describe text that is likely
• Statements that are too obvious are unlikely

(nonsensical “knowledge” produced by the GPT-2 model at talktotransformer.com)



Other languages exist

• Most neural language models only learn English, unless they’re 
specifically designed for translation

• The corpora in other languages aren’t big enough or 
representative enough

• ConceptNet’s representation connects many languages (100 
languages have over 10k terms each)



Using ConceptNet



conceptnet.io – a browsable interface

● Links to other resources such as the documentation wiki and the Gitter chat



api.conceptnet.io – a Linked Data API



How should we represent ConceptNet in 
question answering?
• Everything changes so fast that I can’t bless one technique

• Encoding ConceptNet edges as if they were sentences, in an 
attention model, seems to work well in multiple systems

• Alternatively, ConceptNet can augment training data

• If the thing you need background knowledge for is 
straightforward enough… word embeddings and retrofitting are 
still an option



Recommendation: Combine ConceptNet with 
task-specific training data
• ConceptNet isn’t going to know everything it needs to know for 

your task

• Knowing so many specific things is beyond its scope

• ConceptNet is noisy: it might know one thing about your topic 
except it’s wrong

• Use it as a starting point or a constraint



Recommendation: Don’t assume completeness

• ConceptNet has ~15 million facts in English

• There are many more than 15 million facts of general knowledge

• Word forms might be slightly different

• Fuzzy matching (perhaps via embeddings) is important

glass recycled
ReceivesAction

“recyclable materials”

x



Recommendation: download the data

• If you just need to iterate all the 
edges in ConceptNet, you don’t 
need all the Python and 
PostgreSQL setup

• conceptnet.io -> Wiki -> 
Downloads



blog.conceptnet.io

• Tutorials built using ConceptNet

• Updates to ConceptNet and related open-source tools

• AI fairness





Extra slides



Inferring common sense with CoMET

• Bosselut et al. (2019), at Ai2

• Uses ConceptNet as a training set 
instead of a knowledge resource

• Fine-tune a GPT language model to 
generate ConceptNet statements
• (but only in English)



Recommendation: make sure text 
normalization matches
Example text: “SETTINGS” (English)

• Wrong: /c/en/SETTINGS, /c/en/setting, /c/en/set
• Right: /c/en/settings

Example text: “aujourd’hui” (French)

• Wrong: /c/fr/aujourd, /c/fr/hui
• Right: /c/fr/aujourd'hui

Use conceptnet5.nodes.standardized_concept_uri, or the simple 
text_to_uri.py included with Numberbatch



Align, Mask, and Select

• Zhi-Xiu Ye et al. (2019)

• Improve performance on 
CommonsenseQA by generating 
synthetic training questions from 
Wikipedia and ConceptNet

• Distractors are other nodes in 
ConceptNet



Knowledge graphs in Portuguese NLP

Gonçalo Oliveira, H. (2018), Distributional and 
Knowledge-Based Approaches for Computing Portuguese 
Word Similarity
• Knowledge graphs (including ConceptNet) improve 

Portuguese semantic evaluations
• Best results come from combining multiple knowledge 

graphs representing different variants of Portuguese



OpenBookQA (Ai2)

• “Can a Suit of Armor Conduct Electricity?” (Todor Mihaylov et 
al., 2018)

• QA over elementary science questions

• ConceptNet did not improve baseline results

• Ai2 built their own knowledge graph, Aristo, that focused on 
science knowledge and did improve the results


